How to convert to GeoTIFF for Shikisai products

[Image 1] Conversion of L2 IWPR (Chlorophyll-a concentration etc.) (Sensor Hardware Coordinate)

Here is an example of GeoTIFF conversion of L2 scene images.

GeoTIFF conversion flow

Product information acquisition

1) SD array name acquisition

The following is an example using OSGeo4W Shell which is installed when QGIS is installed on Windows.

Go to the directory where the image data is saved and enter the file name after the gdalinfo command as shown below to get the SD array name.

On Linux, it can be used in terminal applications, but GDAL must be installed.

Image file name

Use the information in the red frame of SUBDATASET_1_NAME, SUBDATASET_2_NAME, and SUBDATASET_9_NAME at the bottom of the displayed information.

SGeo4W Shell	—		×
Subdatasets:			^
SUBDATASEI_1_NAME=HDF5:"GC1SG1_202010290136R05310_L2SG_LWPRQ_2000.h5"://Geomet.ry_	_data/La	atitude	2
SUBDATASET_I_DESU-1783X901177/Geometry_data/Latitude (32-bit_floating-point) SUBDATASET_2_NAME=HDF5:"GCISG1_202010290136R05310_L2SG_IWPR0_2000.h5"://Geometry	data/L	ongitua	le
SUBDATASET_2_DESC=L783x501] //Geometry_data/Longitude (32-bit floating-point)	data E	ongreat	
	20000		
SUBDATASET & NAME=HDF5: GCTSGT_2U2UTU29UT36KU53TU_L2SG_TWFKU_2UUU.h5 ://Image_dat	a/CDUM		^
SUBDATASET = DESC-17620x50001771mage_data/CDUW_CT6-DTC_dnstaned_Integer7 SUBDATASET_9_NAME=HDF5: "GC1SG1_202010290136R05310_L2SG_IWPRQ_2000.h5"://Image_dat	a/CHLA		
SUBDATASET_9_DESC=[/820x5000] //Image_data/CHLA (16-bit_unsigned_integer)	+/04 -	flog	
SUBDATASET 10 DESC=[7820x5000] 7/Image data/QA flag (16-bit unsigned integer)	ita/QA_I	iiag	
SUBDATASET_11_NAME=HDF5: "GC1SG1_202010290136R05310_L2SG_IWPRQ_2000.h5"://Image_da	ita/TSM		
SUBDATASET_TT_DESC=L782Ux5UUU] //Image_data/TSM (16-bit unsigned integer)			\sim

Work file creation / processing

2) VRT / XYZ file creation

Create an ASCII Gridded XYZ file for latitude (Latitude) and longitude (longitude), and a VRT file for chlorophyll-a concentration (CHLA).

Work file creation / processing

Longitude file

0.5

1.5

2.5

3.5

4.5

0.5

1.5

2.5

3.5

4.5

2 3 4

1 2 3

4

(ASCII Gridded XYZ)

B C D

0.5 118.0549

0.5 118.1267

0.5 118.1979

0.5 118.2686

0.5 118.3386

C

0.5 118.0549

0.5 118.1267

0.5 118.1979

0.5 118.2686

0.5 118.3386

D

46,4510

46.44683

46.44259

46.43835

46.43409

3) Create GCP List

GDAL has a limit on the number of GCPs you can use. Create a GCP List (thinned data) to be used in the VRT file from the ASCII Gridded XYZ files of latitude and longitude.

With 100 pixels thinned out for the scene, the latitude and longitude are linear and an error of about 0.01° occurs.

a) Combine latitude and longitude files into one file using Excel etc.

Latitude file

0.5

1.5

2.5

3.5

4.5

3

(ASCII Gridded XYZ)

В

С

0.5 46.4510

0.5 46.4468

0.5 46.4425

0.5 46.43835

0.5 46.43409

D

b) Create GCP thinned data.

The following is an example of an Excel function.

Reference:

Superposition of images processed by thinning (100 pixel intervals) and Natural Earth (10m countries)

The table is as follows.

				Pix ou	Pixel direction output classification				ie direct tput cla	tion ssificatio	n Output
	А	В	С	D	Е	F		G	🛛 н 🕇	I 🖌	
1	0.5	0.5	0.5	0.5	129.9253	46.45106	Y		Y	Y	
2	1.5	0.5	10.5	0.5	129.9971	46.44683	N		Y	N	
3	2.5	0.5	20.5	0.5	130.0683	46.44259	N		Y	N	
4	3.5	0.5	30.5	0.5	130.1389	46.43835	N		Y	N	
5	4.5	0.5	40.5	0.5	130.2089	46.43409	N		Y	N	
~		~ ~		~ -			••				

Use the filter function to set the value in column I to "Y" only.

	А	В	С	D	E	F	G	Н	1
1	(-	(-	(-	(-	129.92 🖵	46.451 -	Y 👻	Y 👻	T, Y
11	10.5	0.5	100.5	0.5	130.6173	46.4084	Y	Y	Y
21	20.5	0.5	200.5	0.5	131.2574	46.36517	Y	Y	Y
31	30.5	0.5	300.5	0.5	131.8531	46.32166	Y	Y	Y
41	40.5	0.5	400.5	0.5	132.4105	46.27807	Y	Y	Y

Work file creation / processing

3) Create GCP List

Copy the filtered values from column C to column F on a separate sheet.

	А	В	С	D
1	0.5	0.5	129.9253	46.45106
2	100.5	0.5	130.6173	46.4084
3	200.5	0.5	131.2574	46.36517
4	300.5	0.5	131.8531	46.32166
-				

c) b) Add the following columns A, B, D, F, H, and J to the thinned data and save it as a CSV file.

	А	В	С	D	E	F	G	н	1	J	
1	<gcp <="" id="" th=""><th>Pixel=</th><th>0.5</th><th>Line=</th><th>0.5</th><th>X=</th><th>129.9253235</th><th>Y=</th><th>46.4510612</th><th>5 /></th><th>Γ</th></gcp>	Pixel=	0.5	Line=	0.5	X=	129.9253235	Y=	46.4510612	5 />	Γ
2	<gcp <="" id="" th=""><th>Pixel=</th><th>100.5</th><th>Line=</th><th>0.5</th><th>X=</th><th>130.6173401</th><th>Y=</th><th>46.40840149</th><th>/></th><th></th></gcp>	Pixel=	100.5	Line=	0.5	X=	130.6173401	Y=	46.40840149	/>	
3	<gcp <="" id="" th=""><th>Pixel=</th><th>200.5</th><th>Line=</th><th>0.5</th><th>X=</th><th>131.2574005</th><th>Y=</th><th>46.36516571</th><th>./></th><th></th></gcp>	Pixel=	200.5	Line=	0.5	X=	131.2574005	Y=	46.36516571	./>	
4	<gcp <="" id="" th=""><th>Pixel=</th><th>300.5</th><th>Line=</th><th>0.5</th><th>Х=</th><th>131.8530731</th><th>Y=</th><th>46.3216552</th><th>/></th><th></th></gcp>	Pixel=	300.5	Line=	0.5	Х=	131.8530731	Y=	46.3216552	/>	
5	<gcp <="" id="" th=""><th>Pixel=</th><th>400.5</th><th>Line=</th><th>0.5</th><th>X=</th><th>132.4105225</th><th>Y=</th><th>46.27806854</th><th>./></th><th></th></gcp>	Pixel=	400.5	Line=	0.5	X=	132.4105225	Y=	46.27806854	./>	
											-

Open the saved csv file with a text editor such as Notepad.

%GCP Id=""""", Pixel=,0.5,Line=,0.5,X=,129.9253235,Y=,46.45106125,/>
"<GCP Id=""""", Pixel=,100.5,Line=,0.5,X=,130.6173401,Y=,46.40840149,/>
"<GCP Id="""", Pixel=,200.5,Line=,0.5,X=,131.2574005,Y=,46.36516571,/>
"<GCP Id="""", Pixel=,300.5,Line=,0.5,X=,131.2574005,Y=,46.32165527,/>
"<GCP Id="""", Pixel=,400.5,Line=,0.5,X=,132.4105225,Y=,46.27806854,/>
"<GCP Id="""", Pixel=,500.5,Line=,0.5,X=,132.9347992,Y=,46.23453522,/>
"<GCP Id="""", Pixel=,600.5,Line=,0.5,X=,133.4301453,Y=,46.19113541,/>

Use "Replace" to convert as shown on the right.

The GCP list is complete.

<gcp -<="" th=""><th>Id=‴″</th><th>Pixel="0.5" Li</th><th>ne=~0.5~ X=</th><th>:~129.9253235~ Y</th><th>=~46.45106125</th><th>$" \rightarrow$</th></gcp>	Id=‴″	Pixel="0.5" Li	ne=~0.5~ X=	:~129.9253235~ Y	=~46.45106125	$" \rightarrow $
<gcp< th=""><th>Id=""</th><th>Pixel="100.5"</th><th>Line="0.5"</th><th>X="130.6173401"</th><th>Y="46.408401</th><th>49″/></th></gcp<>	Id=""	Pixel="100.5"	Line="0.5"	X="130.6173401"	Y="46.408401	49″/>
<gcp< th=""><th>Id=""</th><th>Pixel="200.5"</th><th>Line="0.5"</th><th>X="131.2574005"</th><th>Y=~46.365165</th><th>71″/></th></gcp<>	Id=""	Pixel="200.5"	Line="0.5"	X="131.2574005"	Y=~46.365165	71″/>
<gcp< th=""><th>Id=""</th><th>Pixel="300.5"</th><th>Line="0.5"</th><th>X="131.8530731"</th><th>Y="46.321655</th><th>27″/></th></gcp<>	Id=""	Pixel="300.5"	Line="0.5"	X="131.8530731"	Y="46.321655	27″/>
<gcp< th=""><th>Id=""</th><th>Pixel="400.5"</th><th>Line="0.5"</th><th>X="132.4105225"</th><th>Y=~46.278068</th><th>54″/></th></gcp<>	Id=""	Pixel="400.5"	Line="0.5"	X="132.4105225"	Y=~46.278068	54″/>
<gcp< th=""><th>Id=""</th><th>Pixel="500.5"</th><th>Line="0.5"</th><th>X="132.9347992"</th><th>Y="46.234535</th><th>22″ /></th></gcp<>	Id=""	Pixel="500.5"	Line="0.5"	X="132.9347992"	Y="46.234535	22″ />
<gcp< th=""><th>Id=""</th><th>Pixel="600.5"</th><th>Line="0.5"</th><th>X="133.4301453"</th><th>Y="46.191135</th><th>41″/></th></gcp<>	Id=""	Pixel="600.5"	Line="0.5"	X="133.4301453"	Y="46.191135	41″/>
		" "	· · · - · ·		· · · · · · · · · · · · · · · · · · ·	

Column A:	<gcp <="" id="" th=""></gcp>
Column B:	Pixel=
Column D:	Line=
Column F:	X=
Column H:	Y=
Column J:	/>

• $\lceil "< \rfloor \rightarrow \lceil < \rfloor$ • $\lceil """"" \square \rfloor$ □ : space
• $\lceil =, \rfloor \rightarrow \lceil "" \square \rfloor$ • $\lceil . \rceil \rightarrow \lceil " \square \rceil$

GCP settings

4) GCP List settings

After adding information such as latitude / longitude file to the VRT file of chlorophyll-a concentration (CHLA) converted in 2) with Notepad etc., overwrite and save it.

< Before addition >

< After addition >

GeoTIFF conversion / reprojection

5) GeoTIFF conversion / reprojection

Use the GDALWARP command to convert the VRT file edited in 4) to GeoTIFF and reproject it to EPSG: 4326.

< Output file display example in QGIS >

